Skip to main content

The AVR is a modified Harvard architecture 8-bit RISC single-chip microcontroller, which was developed by Atmel in 1996. The AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time.

An AVR microcontroller is a type of device manufactured by Atmel, which has particular benefits over other common chips, but first what is a microcontroller?

The easiest way of thinking about it is to compare a microcontroller with your PC, which has a motherboard in it. On that motherboard is a microprocessor (Intel, AMD chips) that provides the intelligence, RAM and EEPROM memories and interfaces to rest of system, like serial ports (mostly USB ports now), disk drives and display interfaces. A microcontroller has all or most of these features built-in to a single chip, so it doesn’t need a motherboard and many components, LEDs for example, can be connected directly to the AVR. If you tried this with a microprocessor, bang!

PC microprocessors are always at least 32-bit and commonly now 64-bit. This means that they can process data in 32-bit or 64-bit chunks as they are connected to data buses this wide. The AVR is much simpler and deals with data in 8-bit chunks as its data bus is 8-bit wide, although there is now an AVR32 with 32-bit bus.

A PC has an operating system (Windows or Linux) and this runs programs, such as Word or Internet Explorer or Chrome that do specific things. An 8-bit microcontroller like the AVR doesn’t usually have an operating system, although it could run a simple one if required, and instead it just runs a single program. 

Just as your PC would be useless if you didn’t install any programs, an AVR must have a program installed to be any use. This program is stored in memory built-in to the AVR, not on an external disk drive like a PC. Loading this program into the AVR is done with an AVR programmer, usually when the AVR is in a circuit or system, hence AVR ISP or AVR In System Programmer. So what is a program?

A program is a series of instructions, each very simple, that fetch and manipulate data. In most applications where you would use an AVR, such as a washing machine controller for example, this means reading inputs, checking their state and switching on outputs accordingly. Sometimes you may need to modify or manipulate the data, or transmit it to another device, such as an LCD or serial port. A series of simple binary instructions are used to do these basic tasks and each one has an equivalent assembly language instruction that humans can understand. The most basic way of writing a program for an AVR is to use assembly language (although you could write binary numbers if you want to be pedantic). 

Using assembly language allows you to understand far more about the operation of the AVR and how it is put together. It is also produces very small and fast code. The disadvantage is that you as the programmer have to do everything, including memory management and program structure, which can get very tedious.

To avoid this, high level languages are increasingly being used to write programs for the AVR, C in particular but also Basic and Java derivatives. High level means that each line of C (or Basic or Java) code can translate into many lines of assembly language. The compiler also deals with the program structure and memory management so it is much easier. Commonly used routines, such as delays or maths, can also be stored in libraries and reused very easily.

Comments

Popular posts from this blog

AVR Studio 4 Installation Guide

Introduction to AVR Studio 4 AVR Studio 4 is Atmel's integrated development environment (IDE) specially design to write and debug applications for AVR devices. The suite includes a text editor to write programs, an assembler to translate assembly code into object programs, and a simulator to watch code's behavior without need of having an AVR device attached.   System Requirements : Window XP Window Vista Window 7(32-Bit) Window 7(64-Bit) Windows 8 Step 1: Download AVR Studio 4 from Here - Download Step 2: Download Win AVR from Here - Download Step 3:  Install Win AVR Software Step 4: Installing AVR Studio Locate the setup program in the folder where you downloaded the software. In this case, the name of the setup program is aStudio4b460.exe . Double-click on aStudio4b460.exe to start the installation. Select Next on the appearing window. Read the license agreement, select the "I accept" option, and...

AVR First Program - LED Blink

This is a simple blinking LED program. We will look at basic structure and cover specifics about the syntax. First let’s talk about the files that surround the main document you created. These are called “includes” and they bring code into the main document. This code adds or augments the functionality of your code. Includes can be found in the WinAvr folder and in the current project folder.  This include is outside the project folder and uses the <> around the name #include <avr/io.h> Schematic  Program /*********************************************************** Program : LED Blink. Software: IDE: Atmel Studio 4 Compiler: avr-gcc Microcontroller - Atmega 16 Port B : LED Copyright (C) 2014 - 2016 H.E.A.R.T. Tech Solutions, India. ************************************************************/ #include<avr/io.h> #include<util/delay.h> void main() { DDRB=0b1111111; // PORT B All Bits...

AVR Studio 4 - Project Guide & Working

AVR studio is an Integrated Development Environment (IDE) by ATMEL for developing applications based on 8-bit AVR microcontroller. Prior to installation of AVR Studio you have to install the compiler WinAVR. This will allow AVR Studio to detect the compiler Step 1 : Open Software AVR Studio 4 Step 2 : Click on New Project Step 3 : Click on AVR GCC Write the project name Select your project location. Click on Next >> Step 4 : Click on AVR Simulator in left block and then select your controller (e.g.: ATmega16). Click on finish button Step 5 : Write the code in main body area. Save the project file. Step 6 : Go to BUILD -> Compile. This will compile your code and generate error if any. If there is any, rectify the code and Compile Again. After Successful Compilation  This will generate hex file of the code. Use that Hex file to burn your microcontroller. Where you will find Hex file? Just go t...